4 FEYNMAN DIAGRAMS

I Quantum electrodynamics

4 Feynman diagrams

We introduce the representation of subatomic particle interactions using Feynman diagrams.
Richard Feynman invented these diagrams to provide intuition of the physical problem before
commencing more detailed calculations. Here we also use their intuitive simplicity as a ped-
agogical tool to introduce central concepts in particle physics. We will first use them in the
context of quantum electrodynamics (QED) is the microscopic theory of electromagnetism
containing electrons, positrons, and photons.

4.1 Electromagnetic scattering

In QED, we represent matter (and fermions generally) with an arrowed solid straight line
represents while a wiggly line represent photons (and spin-one bosons generally):

> = electron 4.1)
- = positron 4.2)
ANnANANNANNANL = photon 4.3)

We take the convention that electrons (matter) point to the right —, and positrons (antimatter)
point to the left <—. By themselves, these diagrams represent particles freely flying through
space. Next, we represent the only interaction in QED by a vertex that may only connect two
fermions with one photon:

8EM — €

e 4.4)
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This represents an interaction with strength set by the electromagnetic coupling ggm << e,
which is proportional to the electric charge e

ghv = —— = 4magy (4.5)

where o) is the fine structure constant. This is the small dimensionless real number

2

e 1
= ~ — ~0.0073. 4.6
4reghe 137 (4.6)

OEM

The electric charge has the size e = \/4mogyhc, such that in natural Heaviside—Lorentz units
e—= \/m ~0.3.

More generally, a particle with multiplicative units of electric charge Q re simple rescales
the vertex factor

geM — gemOf. 4.7

The QED vertex of equation (4.4) respects charge conservation: if one arrow goes into the
vertex, the other arrow must leave. This is why I like to view the direction of the arrow in
the straight line as a reminder of the flow of (negative) electric charge analogous to electric
current in circuits. Historically, the literature likes to talk about positrons as negative energy
states flowing backwards in time Et — (—E)(—t) called the Feynman—Stiickelberg interpre-
tation. Figure 24 shows the basic anatomy of a Feynman diagram representing an interaction
via the exchange of a mediator.
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Figure 24: Schematic of Feynman diagram. Left shows two initial and and right shows
two final states. An interaction is realised as the upper particle emits a mediator at vertex A,
which is absorbed by the lower particle at vertex B.

With the basic ingredients of 4.3 and 4.4, we can draw the canonical interactions of
quantum electrodynamics:

e” e~ et Y
>< :(
e e e Y
(a) e"e” — e e : electron scattering (b) e” et — yy: pair annihilation
Y e Y e
e Y Y €+
(c) e~ Y — e v: Compton scattering (d) yy — e e™: pair creation (Breit-Wheeler)

Figure 25: QED 2-to-2 scattering processes. This involves electrons, positrons and pho-
tons in quantum electrodynamics interacting via the fundamental QED vertex (4.4).
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* Figure 25 shows various interactions involving electrons, positrons and photons: (252)
an electron e~ scattering off another electron via a virtual photon 7.

* Figure 25b an electron meeting a positron e~ e™ and annihilating into two photons.
* Figure 25c¢ shows Compton scattering where an electron scatters off a photon.

* Figure 25d shows the creation of an electron-positron pair from two photons. This is
called the Breit—Wheeler process after Gregory Breit and John A. Wheeler studied this
process in a Physical Review paper entitled “Collision of Two Light Quanta” [44] in
1934 while they both worked here at New York University. Today, I myself actively
research this process alongside pair creation of other particles, namely yy — uu and
Yy — 77 at the Large Hadron Collider.

We follow the common convention that places the initial states of a reaction on the left and
final states on the right of a Feynman diagram.

4.2 \Virtual particles

The exchange of virtual particles is the quantum mechanical description of force. Let us
zoom into a particular Feynman diagram for closer analysis. Consider the interaction 142 —
142"

1 & 1 g 1 g
81X
X = X - X . (4.8)
82x
2 2/ 2 2/ 2 2/
We describe X as a virtual particle that is exchanged because it does not appear in
the final states. For time flowing left-to-right —, the Feynman diagram is equal to the su-
perposition of the two time-ordered diagrams on the right. It is momentarily created and

annihilated at the vertices. In special relativity, we can work in the rest frame of particle
1 to conserve energy and momentum at the vertex gx, writing in four-momentum notation

P= (E/C,p) = (Eypmpyapz):
Py — Py +Px 49)

(ml) = <E1) + (EX ) . (4.10)
0 P —Pp1
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So the energies of particles 1 and X on the right-hand side are
Ef =pi+(m)* and Ey=pi+(mx)’

where p; = |p1|. Now consider the energy difference before and after the process at vertex

81x-

2p1, p1>m
AE = (E;+Ex)—m; — P P

myx, pi <<mX.

We find AE # 0V p; meaning energy cannot be conserved at the vertex gix. This seems
alarming, but we recall the energy—time uncertainty relation in quantum mechanics AEAf 2,
h. This states that it is not possible to definitively know the precise energy of a system within
a finite time. The “violation” of energy conservation is allowed for a duration of At < /i/AE.
Using AE > my, we also infer the distance d for any exchange particle X to propagate before
being absorbed by particle 2 is restricted by

fic

myc

d<R=

5 (4.11)
We define R as the range of the exchange particle and by implication the force. In general,
4-momentum need not be strictly conserved at a vertex. Note that for mass particles such as
photons my — 0, R — oo implying infinite range for electromagnetism.

Mandelstam variables Particle physicists often adopt a notational conventional for any
scattering of two initial and two final states (called 2-to-2 scattering) to describe various
momenta exchanged that are Lorentz invariant. Using the labels in figure 4.8, these are
called the Mandelstam variables and defined as:

s= (P +P,)?%, (4.12)
t=(P1—Py)?, (4.13)
u=(P;—Py)2. (4.14)

(4.15)

The +/s equivalent to the centre-of-mass energy of the initial state system, and is widely
used at particle accelerators. Meanwhile, /¢ is often seen when describing the momentum
exchange.
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4.3 Scattering and propagators

In quantum mechanics, we model interactions using potentials in the Hamiltonian of Schrédinger’s
equation. This allows us to calculate a matrix .# of final state | f) occurring due to a potential
V given we start with initial state |i):

M= (f|V]i) = /l//fVl//,-dr. (4.16)

This has the heuristic:

M ; = |prepare initial states) — ’ interaction happens ‘ — |measure final states).  (4.17)

At this point, let us briefly review a selection of key results from scattering theory presented in
non-relativistic quantum mechanics classes. Assuming the incident particle is a momentum
eigenstate |¢) = |k) of the free Hamiltonian Hy = k?>/2m. We can write this in position
representation as a plane wave

1.
(r[¢) = ¢o(r) = Welk'r (4.18)

3/2

normalised® by (27)%/2. We work with sufficiently localised potentials such that V — 0

in the limit |r| — oo. Quoting some results from standard quantum mechanics textbooks, the
asymptotic solution to scattering off a potential V (r) in three dimensions is a superposition
of the incident plane and spherical waves scattered forward, denoted v :

" eikr
e 'r+f(k’,k)7 , (4.19)

r—oo

Y(r) — ¢o(r) + vy (r) = 2npn

where r is the asymptotic observation position and f(k’,K) is the scattering amplitude:

2 3
119 =~ o vy, (4.20)

This f(k’, k) contains all the information about the incident waves scattering off the potential
V. In (4.19), we neglect the interference between the incident wave (first term) and the
scattered spherical waves (second term).

We commonly work in the regime Hy >> V where the kinetic energy of the incident beam
dominates over the scattering potential. Then the scattering beam is, to a first approximation,

33This slightly awkward normalisation will cause factors of 1/(27)3 to appear in our Fourier transform like

expressions going from space to momentum. This is sometimes known as the ‘physicist’ normalisation for

3/2

Fourier transforms as opposed to the ‘mathematician’ 1/(27)-/* normalisation.
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unchanged by V. So the final state of the system |y ) is approximately equal to the initial
momentum eigenstate |k). It is possible to expand the scattering amplitude (4.20) as a Born
series and keeping the leading term we have

3
YK k) = —%2m<k’\v\k> (4.21)

So given a scattering potential V, we find the scattering amplitude f m(k’ ,k) is given by
F (K K) o< (K'|V|K). Using the completeness relation [dr |r)(r| twice, we can recast
(4.21) into the position representation:

K|V[K) = / &' / ECr (K ) (¢ |V |1 (r]K) = / Sk |0V (r)(r/k), (4.22)

where in the second equality, we apply a sufficiently localised potential (¥'|V|r) =V (r')§®) (r' —
r) such that integrating over the r’ sends r' — r. Using the momentum eigenstates in position
representation (4.18) we obtain

K'|VIK) = rV(r)ed” (4.23)

This is the central result of the Born approximation, which states that the scattering ampli-
tude £ (K, k) is proportional to the Fourier transform of the scattering potential V (r) in
momentum transfer space q = Ak = k k’. Recall from quantum mechanics that the prob-
ability current density formula is j = 2m1 (y*Vy — yVy*). Applying this to (4.19), we find
the differential cross-section is the modulus square of the scattering amplitude (4.20):

dG 2’J§cat‘
d_Q ‘Jmc‘

=|f(kk)|*. (4.24)

This connects the theoretical scattering amplitude f(k’,k) with an observable do/dQ. The
interpretation of (4.24) is that do is the probability incident particles are scattered into the
solid angle element dQ2. By performing scattering measurements of the differential cross-
section (4.24), we can inverse Fourier transform to infer the scattering potential V (r).

You may be feeling déja-vu from optics classes? This because indeed you have seen
the same effect as light or electrons passes through a single slit experiment (figure 26). The
interference pattern f(k) of wiggles you see on a screen far away from the slits is precisely
the Fourier transform of the slit aperture a(x)

f(K) o / a(x)e* X Py (4.25)
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Figure 26: Diffraction pattern as Fourier transform. The interference pattern viewed
far away by an observer is the Fourier transform of the aperture during waves scattering. In
quantum mechanical scattering, the scattering amplitude is analogously the Fourier transform
of the potential. Figure: tikz.net.

This is simply how waves behave! The wiggles encode all the information of ingoing waves
interacting with the slits. In the quantum mechanical scattering, we have generalised the op-
tical slits into any localised potential V (r). This is actually how the path integral formulation
of quantum mechanics works. As the slit width is taken to infinity, the amplitude is the sum
of all possible paths taken.

We can model the range R of a force by adding an exponential function that decays
rapidly e™” /Rioal /r potential familiar from a classical Coulomb electrostatic force:

g2 e 7/R

Vr(r) =~ (4.26)

We call this the Yukawa potential, after Hideki Yukawa who studied this for the strong nu-
clear force. Here, g is the coupling constant and R is the characteristic range of the potential
according to (4.11). For those who enjoy multivariate calculus, we can align the momen-
tum transfer q in the z direction such that q - r = |q|rcos 8, we can perform the integral over
spherical polar coordinates with d’r = r2sin 9drd9d¢>:

r

2n e —r/
K k / / / 1\q\rcose 2 4.2
K'|Wylk) = 27r 2147 h—o Jo-oJso r“sin 0drd6d¢ (4.27)

To evaluate the angular parts of the integral, we can perform a change of variables z =
cos 0,dz = —sin 8d0 to yield the radial integral

2 (oo}
/ __ & 1 / (ila]—mx)r _ o~ (ila|+my)r
KVl =~ 55 | [e e ]dr. (4.28)
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Finishing this and overcoming some more algebra’®, the scattering amplitude becomes
g 1
(27) 1q|* + (mx)*

The coupling constant g paramterises the strength of the interaction. The two factors of g

(K'|Vy|k) = — (4.29)

corresponds to the two vertices where the exchange particle X is created and annihilated. In
general, for an amplitude calculation involving N vertices, there are N factors of g. Thus N
is the order of the amplitude. We also identify the propagator:
1
g2 + (mx)?

This represents the associated momentum and mass exchanged in the interaction. In relativis-

(4.30)

tic formulations, this expression (4.30) generalises to the relativistic Feynman propagator:

1
P =07, (4.31)
Q2 — (my )2
where Q and my are the 4-momentum and invariant mass of the exchange particle X, re-
spectively, involved in the interaction. For those taking quantum field theory, this is formally

related to the Green’s function G(k) of the Klein—-Gordon equation (3.37) in Fourier space:
(O4+m*)Gx—y)=8(x—y) = (—K+m*)Gk)=1. (4.32)
We find that these virtual particles do not satisfy the usual P? relation:
Q> = Ef —ky -ky # (mx)>. (4.33)

We call this inequality being off mass-shell and is required otherwise the propagator di-
verges. In general, the scattering amplitude of order N is related to the vertex factor gg and
the propagator & of the virtual exchange particle by:
(8q7)"
Q2 — (my)?

For electromagnetic interactions, we need to calculate the amplitude (f|Vgm|i) where Vim

(K'|VIK) o< Ay = (4.34)

is the Coulomb potential. This is the Yukawa potential in the infinite range limit R — oo, or
equivalently the mass of the mediator to zero my — 0, as expected for massless photons.

36physically, we can invoke the far-distance argument, where the exponent vanishes
lim, ;. exp[(i|]q| —mx)r] — O in the r — oo limit. The imaginary part of the argument causes oscilla-
tions while the real part exponentially decays as r — oo, implying no part of the exponent grows and we can
therefore assume it vanishes in a physically sensibly manner. For those who have taken complex analysis
classes, a more rigorous treatment uses contour integrals to evaluate this in the complex plane and applies the
residue theorem for each pole.
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4.4 Gauge theory of electrodynamics

The quantum field theory classes cover this topic in far greater detail, but let us sketch out
the main arguments for those not taking that course or for review. The gauge theory of elec-
trodynamics is the simplest such theory of nature, and the prototype for generalisation to the
strong and weak forces. From Maxwell’s equations (3.20), we can write the electromagnetic
fields in terms of the electric ¢ and magnetic A potentials as derivatives

E:—V¢—aa—?, B=VxA. (4.35)

We can form the electromagnetic four-potential, which transforms as a four-vector

AF = (i) . (4.36)

The fields E, B remain invariant up to a gauge transformation to a function  (x) whose space-

AH AT — <¢ - af") . (4.37)

time derivative exist

A+Vy

Electromagnetic fields remain invariant under such a transformation, which is a statement of
gauge invariance. Recalling A, = nyvAY = <_¢A> and dy, = < f’v>, we can write the gauge
transformation in four-vector form as

Ay — Al = Ay — dux(x). (4.38)

In classical mechanics, we can define a Lagrangian L(x,x) = T —V for kinetic T and

potential V energies such that Euler-Lagrange equation gives the equation of motion ‘3—1; =

%%. It turns out we can extend this formalism to describe classical fields y/(x) that man-
ifestly respect Lorentz invariance. We do this with a Lagrangian®’ Z(y,d,y) = 7 — ¥
by identifying x — y(x ) and its four-derivative X — dj, y and applying the Euler-Lagrange

equation yields the equation of motion

A 0%
= —0, | —— . 4.39
gy (awm) (+:39)

This is a ridiculously quick review of field theory, where further details about how this is
quantised appears in Quantum Field Theory classes and textbooks.

¥ Technically . is the Lagrangian density L = [ d*x.Z but textbooks often drop “density” for brevity.
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The Dirac equation of motion (3.49) is given by to the Lagrangian

Lirac = W(iv" oy —m)y. (4.40)

The minimal coupling prescription of spin-half particles interacting with electromagnetism
promotes the partial derivative in the Dirac equation to a covariant derivative:

So the Dirac Lagrangian becomes:
L =y(iy'*Dy —m)y. (4.42)

The Lagrangian (4.42) is invariant under a global complex phase. Mathematically, we see
this with the transformation

v — ' =y(x)e ¥ global U(1) (4.43)

where « is a constant and the Lagrangian remains invariant because the ¥ introduces a factor
of e 1% We call this a global U(1) symmetry of Dirac theory. This is a continuous symmetry
so by Emmy Noether’s theorem’®, there is a conserved current

M=y (4.44)

This spinor current j* couples to the electromagnetic field A, in the covariant derivative
leading to the QED interaction vertex:

—ieAy ! = ieA Uy, (4.45)

Now let us change the global complex phase into a local complex phase such that it
depends on spacetime @ — /(x)

v — v = yx)e *® Jocal U(1). (4.46)

3For field theorists among our readers, this is technically a slightly stronger requirement that there is a
symmetry of the action S = [ d*x Zirac, Where Lirae = W (iy* Dy —m)y is the Dirac Lagrangian. In this case,
this global U(1) symmetry exists for the equation of motion, Lagrangian, and action.
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We call this a local U(1) transformation. As the exponent is now a function of spacetime,
the product rule applies for the derivative so the Dirac equation becomes

(iY*Dy —m)y — [iy" (dy —idy o +ieA,) —mly'. (4.47)
~—~—

extra

We now see this seems to have lost the U(1) symmetry due to the extra piece idy a(x) from
the product rule.

But worry not, we can restore the invariance via the gauge transformation of the photon
field (4.38): Ay — AL =Ay— 8“ x(x). If we perform the local U(1) transformation on
v — ye () and gauge transformation Ay — Ay — dux(x) simultaneously, we can restore
the invariance of the Dirac equation by identifying

x(x) = . (4.48)

So now we can state equation (4.42) is invariant under the simultaneous transformations:

io(x)

Vv —ye TV local U(1) transformation, (4.49)

1
A* — AF — —9 o (x), gauge transformation. (4.50)
e

This is the gauge theory of electromagnetism. Its mathematical simplicity belies its pro-
fundity that forces are deeply intertwined with local spacetime and gauge symmetries. By
itself, embedding the two =+ physical polarisations of the photon €4 into the four degrees of
freedom of a Lorentz vector A, results in gauge redundancy.

However, in quantum mechanics, the potential A;; seems more fundamental, which is
what that couples to the complex phase of particle amplitudes. Figure 27 shows an electron
traversing spacetime. Its wavefunction y acquires a complex phase that changes with its po-
sition and time, which is determined by the gauge freedom of the electromagnetic potential
Ay In the case of U(1) electromagnetism, the phase traces out a circle, which is sometimes
called the internal space. This is a manifestation of the Aharanov—Bohm effect, which is an
experimental demonstration that a non-zero potential A, imparts a phase shift to the wave-
function even when the fields (first derivative of potentials) are zero.

The electromagnetic field strength tensor is given by
FHY = 0tAY — 9VAH, (4.51)
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t Internal space e

Spacetime

A*-d*a/e

> X

Figure 27: Sketch of gauge theory. A particle moving through spacetime in the presence
of a non-trivial vector potential A*. The wavefunction acquires a change in local phase
Y — l//e*i“(x), whose internal space of U(1) electromagnetism is a circle. The phase change
corresponds to a change in the gauge potential A — A* — 58“ a.

It is a traceless antisymmetric object that transforms as a tensor F/*V = Aﬁ ALFPO. We can
write out in time-space coordinates in terms of the electric E and magnetic B fields as:

~E, —E, —E,
E., 0 —B, B
FHY = Ex B OZ I; (4.52)
y Z —Dx
E.-By B, 0

The field tensor F*V is gauge invariant by construction i.e. is invariant under a gauge trans-
formation (4.50). The inhomogeneous Maxwell equations, namely Gauss’ and Ampere’s
laws, in the presence of sources jy is written in manifestly covariant form as

OuFHY = jV. (4.53)
The source-free Maxwell equations are then written as
duFHY =0AY — 9Y(duAH) =0. (4.54)
The Lagrangian that produces this equation of motion upon applying the Euler-Lagrange
equation is

1
Aaxwell = —ZF,WF“V. (4.55)
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The homogeneous Maxwell equations (no magnetic monopoles and Faraday’s law) are cap-
tured by the Bianchi identity dyFys 4 dvFsy + dsFyy = 0. Combining the Maxwell and
Dirac Lagrangian (4.42) gives

1 _ .

This is the Lagrangian for the theory of quantum electrodynamics. It is a marvel that this is
our most precise description of electromagnetism and the prototype for the nuclear forces in
the Standard Model.

Gauge fixing

We are always free to choose A* to satisfy the Lorenz’® gauge

duAt =0. (4.57)
To see this, say we acquired a gauge field A* that instead satisfies
At = f(x), (4.58)

where f(x) is some non-zero well-behaved function. We are always free to perform a gauge
transformation (4.50) to yield

duAH — 0Oy = f(x). (4.59)
If we wish to recover the Lorenz gauge dy,A* = 0, we require this condition to hold:
Ox = —f(x). (4.60)

This is the inhomogeneous wave equation which may always be solved for solutions. Hence
we are always free to choose the Lorenz gauge.
In the Lorenz gauge, Maxwell’s equations (4.54) reduce to a wave equation

OA* =0, (4.61)

3This is named after Ludvig Lorenz (1829—1891), not Hendrik Lorentz (1853—1928) of the Lorentz transfor-
mations. Sometimes the literature calls this the ‘Lorentz’ gauge. Unfortunate misattribution aside, it is indeed
a Lorentz covariant choice. Even worse, the pair have a Lorenz-Lorentz equation named after them. All this is
not to be confused with Edward Lorenz (1917-2008) of the Lorenz attractor, pioneer of chaos theory.
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which has solutions of the form

AH = / d' e (k)e k= (4.62)
2y . .
This has the form of a massless Klein—Gordon equation so analogous to (4.31), the relativistic
photon propagator is simply
1

P = a2 (4.63)
All our wonderful mathematics seem to imply the free electromagnetic field has four degrees
of freedom. We know that there are two polarisations of free electromagnetic waves. There

must be two constraints to ground us back to reality:

1. Choose (Lorenz) gauge
In (4.62) €* is the polarisation vector. The Lorenz gauge (4.57) now becomes a
statement of 4-orthogonality:

kye" = 0. (4.64)

This now fixes one component of € in terms of the other three. For example, given

0 0
Kt — (k ) M= (8 ) , (4.65)
k €

the timelike component is completely determined by the spacelike ones:

our vectors are

koe’ =k-€. (4.66)
We are down to 3 spatial independent components of €*. One more to go.

2. Fix residual gauge freedom
Gauge freedom (4.50) in Fourier space becomes

AP — AH = AP 4 ak*, (4.67)

where a is some scalar. From (4.62) corresponds to the polarisation vector being de-
fined up to scalar multiple of k" i.e. we can take

et — gt =t 4 akt (4.68)

This still satisfies the gauge condition (4.64) because k*k, = O for free fields. As we
are free to add multiples of i to €, let us choose a = —&0 / k% such that the timelike
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component of our redefined polarisation vector vanishes €’ = 0. Then we obtain a
statement of 3-orthogonality in the spatial degrees of freedom:

k-€=0. (4.69)

This is in fact equivalent to imposing the Coulomb gauge V - A = 0. There are thus
only two independent components of € perpendicular to k.

Without loss of generality we can align our z axis along the momentum of our electromag-
netic wave, allowing us to choose k* and our two polarisation vectors e{f , to be

kY 0 0
0 1 0

= el = el = 4.70
0 ) 1 O 9 2 1 ( )
K 0 0

This is equivalent to vertical and horizontal polarised photons. One could also choose circular
polarised photons

[
— O
=
(S
— O

el=—|.1, &=—4| .| (4.71)

>
>

The polarisation vectors satisfy the orthonormality condition:
E) &y = 5111 <~ (81)“(8”)“ = —5/111. 4.72)
Finally the full Fourier decomposition of A" is

G @ :
u — u —ik- * oM
A (x) _/(2”)—32&%2—:1 [ak,kgx (ke ™™ +ay &

(K)e k> (4.73)

These are the plane wave solutions, showing the photon as a superposition of the two polari-
sation states A = 1,2 over all available momenta k.

QED Feynman rules

A class in particle physics would not be complete without stating some Feynman rules. These
are algorithms for calculating a cross-section or decay, which are usually derived in QFT



4 FEYNMAN DIAGRAMS GAUGE THEORY OF ELECTRODYNAMICS

classes. You can look these up in textbooks and for completeness, let us print them here. For
on-shell initial and final states, we have:

Ingoing Outgoing
e ——e—y(p) e” —>—— —ii(p) (4.74)
et —==——e—y(p) et —=—— —j(p) (4.75)
Y ~nonnnn~e — €y Y o~~~ — 8:; (4.76)
For off-shell internal lines denoted by *, the propagators are
(g
efe————o_ —1(7]/{2 = +2m), 4.77)
—m
'}fk o e — _lkréllv. (4.78)
The interaction vertex is the electric charge e:
e
=ieyt. (4.79)

Using these Feynman rules, we can draw Feynman diagrams then immediately write down
the mathematical amplitude. As an example, Bhabba scattering involves e e — e e™ for
which an s-channel diagram is

o 7 (pa) ey (p3)] (pﬂ#ﬁz (o) (e ) (p2)],

outgoing —— ingoing
/;?1 ,a P4, CN propagator

(4.80)
where we apply momentum conservation for k = p; + p> and the letters a,b, c,d denote the
spinor indices.
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5 Scattering experiments

Scattering forms the experimental basis for studying particle physics. We just saw how to
draw electromagnetic scattering processes as Feynman diagrams to represent the microscopic
interaction. We now turn to connecting this to experiments of how we actually electrons and
positrons to high energy before measuring how they interact. Typical experiments involve
measuring the production rates of final states when a beam of particles is incident on a target.

5.1 Linear particle accelerators

Without realising it, the Crookes tubes used in the nineteenth century to study cathode rays
constituted the first electron linear accelerators. The principle of a linear accelerator (linac)
is to exploit the fact electric charges experience the Lorentz force and therefore accelerate in
an electric field. Accelerating charged particles feel the Lorentz force

d?x dx
—=f=0(E+—xB|. 5.1
" Q( T ) ©-1)

A motivation was Gamow’s calculations that there is a finite probability of overcoming the
Coulomb potential of a lithium nucleus using a proton into two helium nuclei:

p+3Li — $He+3He (5.2)

In 1932, John Cockcroft and Ernest Walton built the eponymous Cockroft—-Walton gen-
erator could accelerate protons up to 700 keV at the Cavendish Laboratory, Cambridge
(figure 28a). This apparatus constituted the first linear accelerator of a hadron that reached
sufficient energies above 150 keV to induce the artificial transmutation of atomic nuclei [45].
They were also able to test the energy—mass equivalence E = mc?. Figure 28b shows a quaint
model built for museum display of the original experiment at the Cavendish Laboratory *°.

The key technological development was the voltage multiplier converting low-voltage
alternating current into high-voltage direct current via a series of capacitors and diodes. This
became a successful technology that was used by the likes of Fermilab and CERN as the ini-
tial stages of proton injection through the twentieth century (figure 29b). A contemporaneous
device was the van der Graff generator.

Another major development is the drift tube linac (figure 30). Inside a vacuum drift
tube, a series of cylindrical tubes establishes a series of uniform electric field between each

40A wonderful photograph of Walton himself sitting in the viewing chamber is available here: https://
cudl.lib.cam.ac.uk/view/PH-CAVENDISH-P-00557/1
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Figure 28: Cockroft—Walton accelerator apparatus. The first linear accelerator of protons
was constructed in 1932 at Cambridge University and used in the first artificial transmutation
of atomic nuclei. Images: Fermilab, Science Museum/W Lamprey.

tube. The injected charged particle, here an electron e, experiences a force f = ¢E and
accelerates between the tubes.

When the electron exits the first tube, a radio frequency driver generating a square wave
inverts the voltage polarity of all tubes £V — FV. This ensures the force vector always
points in the same direction so the particle keeps accelerating.

If the polarity inversion were not synchronised to each electron exit, the electric field
would decelerate the electron. We can then repeat this principle to accelerate beams up to
very high energies and is highly efficient because the electron does not lose energy in any
region. The main engineering limitations are a) producing large enough potential differences
between each tube and b) constructing very long beamlines. Among the most powerful linear
accelerator built is the Stanford Linear Accelerator (figure 31), which reaches two miles in

length.

Rolf Widerge developed the drift tube concept. For an oscillation frequency f of the
driving oscillator, the length /; of drift tube i, and fB; the velocity of the accelerated particle
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(a) Voltage multiplier (b) CERN CW multiplier

Figure 29: Cockroft—-Walton (CW) voltage multiplier. (a) Crucial to reaching large volt-
ages was the invention of the CW voltage multiplier scheme charging capacitors with an
alternating current. (b) the 800 kV CW generator used until 1993 at CERN for pre-injection
into the linear accelerator. Image: CERN [46].

when entering it, the condition that the particle remains in phase is established whenever

_ e

li=1-.
2f

(5.3)

5.2 Luminosity and cross-sections

To do science, we must use our theory to make measurable predictions. The cross-section is
the most common observable in scattering experiments which justifies its study.
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e
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Figure 30: My cartoon of the drift tube linac concept. The injected particle accelerates
outside the drift tubes wherein the particle traverses at constant velocity (single arrowhead).
The acceleration region is in between the drift tubes (double arrowhead), which must increase
in length /; with increasing particle velocity. The lower sketch depicts the inverted polarity
to ensure the particle accelerates in the same direction as before.

Stanford Linear Collider
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return line o
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Figure 31: Stanford Linear Accelerator. This was the most powerful linear accelerator of
electrons and positrons [47].
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Particle accelerators have two beams that are aimed at each other:

\ [ ] \ .O
| |
| |
.| A | °l A
| L] ) ® °
] ]
e I
N e N
— V] ~— V2

The particle flux ® of a beam is the number of particles per unit area per unit time
N:
D =ny; = ZI (5.4)
* n;: particle number density (number per unit volume) of incident beam,
* v;: velocity of incident particles in beam,
e N;: rate of incident projectiles number per unit time,

¢ A: cross-sectional area of incident beam.

Given the incident beam illuminates V; targets, the effective area of interaction is S = N, 0,
where o, is cross-section of the reaction r with rate w,

Wy

Gr = . 55
O, (5.5)
To obtain a better feel for this expression, rewrite this using (5.4):
Wy = NiNtPscata (5.6)

where Pyt = 0, /A is interpreted as the scattering probability. So we see the reaction rate
w, is the rate of incident projectiles N; incident on N; targets multiplied by the probability
of interaction. Often we consider the number density of the targets n; in some material of
thickness x such that N; = n,Ax.

High-energy colliders use the term instantaneous luminosity for two colliding beams:

# particles crossing one another NN,

Z - . . . - )
time interval X unit transverse area AtA

(5.7

where At = 1/f is the time interval (inverse frequency) between particle bunches, Ny and
N, are the number of particles in each bunch, and A is the transverse area of the beam.
Accelerator physicists commonly use instantaneous luminosity with units of inverse area per

unit time, where cm—2s~ !,
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Figure 32: Integrated luminosity delivered to ATLLAS Experiment. This shows the inte-
grated luminosity [.Z dr of the LHC delivered to ATLAS Experiment during different years.
Figure: ATLAS Luminosity Group.

The number of scattering events Neyents 1S given by

Nevents = G/D%dl, (5-8)

where o is the total scattering cross-section and instantaneous luminosity .. We can also

express this differentially in time as the event rate Reyenis = dNEVf“‘S. The experimental cross-

section o harbours all the physics of the interaction while . is a machine parameter. As
scattering cross-sections of elementary particles are tiny, particle physicists use the unit barn

1barn = 10" fb = 10724 cm?. (5.9)
The LHC has integrated luminosities reaching
L= c/fdt =10**em %s ' =10nb's7' =~ 100fb ! year . (5.10)

So the colloquialism “amount of data taken” in a year is usually expressed in units of inverse
area fb~!. The actual delivered luminosities to ATLAS are displayed in figure 32. So if
there is an process that has a cross-section o = 20 fb, a machine delivering an integrated
luminosity of L = 100 fb~! would produce around N = oL = 2000 events of that process.
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5.3 Fermi’s golden rule

This is a review of the standard non-relativistic derivation found in all quantum mechanics
textbooks, which is sketched here for completeness. This applies time-dependent perturba-
tion theory to model the time evolution of dynamics induced by a small perturbation. We
start with the unperturbed Hamiltonian Hy and a small A < 1 time dependent perturbation
H (1) to give

H = Hy+ AHpy(1). (5.11)

We can express the time dependent state |y/(¢)) as a linear superposition of the eigenstates of
Hy

1) =Y ealt)e E |n) (5.12)

|w>

Substituting this into the time- dependent Schrodinger equation i“Y2 = H|y) then multiply-

ing through by the final state ( /(7| gives

dc (0) 0
—l—;Zne” (FO| B0, (5.13)

We now approximate using perturbation theory by expanding ¢, as a power series in A:
(0) (1)

cn(t) =cn’ +Acy’ +.... Equating the first order terms gives the 1st order correction to the
expansion coefficients

1 1 o) 1 (O _gO), -
>0:TZ&{/J@ O B [0 @) (5.14)

n lo
Consider the case where at t = 0, the system is in the ‘initial’ state |i) such that c,SO) =1is

non-zero only for n = i. Equation (5.14) becomes

! : ! A
é%ﬂz%ééM”U@WmWWM, (5.15)

where AEf; = E}O) — Ei(o). Evaluating the integral gives
IAE it
Dy = Lopog oy =1
t)=— H, _. 5.16

Taking the modulus square of this gives the probability of transition from |i(?)) to | (%)) due
to the perturbation

A . AE it
Proy = e (O = O i) Psine (511 ). 5.17)
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where sinc(x) = sin(x)/x. Let the perturbation induce a transition into a continuum set of
final states | f) with a continuous energy spectrum Ey — E(py) where p; is the momentum.
The transition probability is as given by (5.17) integrating over the final continuum set of

states
oo A2 AE ¢t
Py = /0 | (f|Hineli)|”#sinc? (Tf) dpy, (5.18)
where sinc(x) = sin(x) /x. Changing variables of the argument of the sinc function
AEyit dE(ps) , 1
=——, dg=——"dps=. 5.19
q > o dq dp; Pr5 (5.19)
We introduce the density of states
dp f
Ef)=— 5.20

which measures the quantity of continuum final states contained within [p s, ps+dpy] given
an energy interval [E¢,E;+ dEs]. We assume the transition amplitude (f|Hini) occurs on a
much faster timescale than measurements involving the time evolution of g so is effectively
time-independent. We can therefore take (f|Hiy|i) out of the time integral and extend the
limits to £oo

Py = 2p(EQ| S i) [ sinc()da. (5.21)

The integral evaluates to . Differentiating with respect to time gives the rate of transition
probability to the continuum set of states

dPi—>f

" =27 |{f|Hindi)|* p(Ef) (5.22)
—_——— —

dynamics  kinematics

dPi —f

dr
transition into final state |f). The matrix element .#; = (f|Hiy|i) captures the dynamics

This is the Fermi golden rule. This tells us the rate wy; = of an initial state |i) to

of the Hamiltonian H; represented by Feynman diagrams, while p (E) captures kinematics
and is sometimes called phase space.

(Transition) Corx (Ffaynman> » (Phase) . (5.23)
rate diagrams space
This holds when the time scale for transition |i) — |f) is much faster than the measurement

time and the interaction potential is weak compared to the kinetic energies of the incident
particles.
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The cross section is related to the transition probability divided by the flux factor ®j;,. of
incident particles

o =

2
qf |5 p(Ey). (5.24)

Given particles in incident beams 1 and 2, we can write the Lorentz invariant (frame inde-
pendent) flux factor in various forms

q)inc = 2E1 2E2 ’V] — Vz‘ (5.25)
—4\/(p1- p2)? — it} (5.26)
=2\/(s—m} — md)? — 4mim3. (5.27)

This simplifies for the cases of ultrarelativistic incident particles s > m >. For fixed-target
experiments with particle 2 at rest, this reduces to

Cpﬁxed—target _ 2E12m2|V1 | (5.28)

mc

The cross-section for two particles colliding with energy E; and E is,

1
2E\2E; |[vi — 2|

2
Ol2ox = 27| M| p(Ey). (5.29)
In real experiments, a particle detector might only see a small solid angle of scattered events.
Therefore, it is useful to define the differential cross-section do,/dQ2 for the number of
events scattered into a particular solid angle dQ2 = sin0d0d¢ as:

AN do.(6,9)
15 g X /,Zdt. (5.30)

5.4 Density of states

We now study the study the density of states p(E ) in more detail. In non-relativistic quantum
mechanics, textbooks consider a free particle with wavefunction y(x) =N e 1(E=P) in a box
of length L. Requiring the modulus square of the wavefunction to integrate to unity (to gives
a probability) fixes the normalisation N:

L 1
‘ydr=1, = N=-——. 5.31
/Ol/fw i (5.31)
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Periodic boundary conditions for a particle in a box y(x-+L) = y(x) implies e'?* = ¢!P(*+L),

Expressing unity as a periodic complex number 1 = el(2mn) for integer n, the momenta are
quantised:
ol — | —gim) o, 2T (5.32)
’ L

We can then write how many states squished into the (infinitesimal) interval [n,n + dn] have
momentum [p, p+dp] as
d
dn=-LL (5.33)
2
In the final calculations, every final state particle will introduce a factor of 1/L in the ma-
trix element squared |.#;|>. This cancels with the L in the density of states factor, so we
can henceforth drop the factors of L. Generalising this to the four dimensions of energy-
momentum, we can write this in terms of the infinitesimal four-momentum space volume
d*P = dEdp.dp,dp,
d*p
d*n= —. 5.34
n 2n)? (5.34)
This turns out to be Lorentz invariant and many textbooks write this in a form with physical
constraints, namely that the final-state particles are on their mass shell P? = m? imposed
and they have positive mass m > 0. Formally, they do this by integrating over the energy
component of the four-momentum P = E using a Dirac delta function*' (277)8(P? —m?) for
the on-mass-shell condition and a step function to enforce mass positivity*” m > 0, yielding:
d? dE
d*n= e
(2n)3 ) 2r;

d3pf

27)8(P* —m?) = 2E, )

(5.35)
We can perform the integral using a change of variables x = E2, dx = 2EdE. Every final state
particle with momentum p s comes with a factor of phase space and one set of delta functions
(with factors of (27)* for Fourier normalisation) to impose energy-momentum conservation
(2m)*6™ (L ;P ;— ¥,;P;) momentum conservation:

N d3p
dC¥nps = 20)*8@ (Y P~ Y P TT L, (5.36)

where P; () are the initial-state (final-state) four-momenta. What is the physical meaning of
all this? This tells us that the density of available states is related to the momentum available
to the final states.

#I'The delta function is defined by [*_&(x —a)f(x)dx = f(a) and [~ &(x)dx = 1.
42The Heaviside step function is defined as ®(m) = 1 for m > 0, ®(m) = 0 for m < 0.
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Figure 33: Spherical coordinates. Momentum expressed in spherical coordinates with
infinitesimal angular elements d°p = p>dpdQ, where the solid angle is dQ = sin 0d6d¢.
Drawing adapted from [. Neutelings.

Two body final state

We can calculate the density of states for the simplest case of two particles in the final state.
Using the situation set up in figure 3.12, we have to write

d3p1 d3P2 4
dn = 2m)*8(Ey +Ex — Ecm)8®) 5.37
"= 35 () 2E2(2717)3( )"0 (E1 +E2 — Ecm)0" (p1 +p2) (5.37)
Integrating over d*p, imposes momentum conservation as the delta function fixes p; = —p».
We denote this final-state momentum p s = p; = —p; with subscript f:
1 &
dn P S(E + By~ Ecu). (5.38)

T 2E2E, (2n)2

We now write d°p; in spherical coordinates d°py = p7dpdQ, where ps = |py| and dQ is
the solid angle visualised in figure 33. To help integrate the delta function, we perform the
substitution x = E1 + E> — Ecy then use the chain rule because E, = E,(py) is a function of

pPr-
dE; dEz) <Pf Pf) (E1+E2)
dx=(-—+—")dpr=(=Z+ZL |dps = prdpe, (5.39)
(dpf dpy) T \E T E) EE, )P
where the second equality differentiated the energy-momentum relation
dE, rr

E; = pj+m; = (5.40)

dpf B Ea‘
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We can now substitute dps from the change of variables (5.39) to convert equation (5.38)

into an integral over x:
1 pr dQ

"T4E +E (2n)?

Performing the delta function integration gives unity and enforces x = 0 = E| + E; = Ecwm,

8 (x)dx. (5.41)

yielding the two-body phase space expression:

pr dQ
ECM (475)2 ’

dntwo—body = (5.42)

Given how often processes have two particles in the final state, this is a very useful result.
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6 Electron-position annihilation

We now illustrate all these concepts in a concrete and classic calculation of QED, the ‘hydro-
gen atom of particle physics’. This is electron—positron annihilation via the electromagnetic
interaction to produce a muon—antimuon pair:

e et s y—suut. (6.1)

The corresponding Feynman diagram with momenta labelled looks like this:

(6.2)

This is the only tree-level Feynman diagram for e~ e™ — g~ u™", making it among the sim-
plest QED process to calculate with high pedagogical value. Indeed we cannot write down
a t-channel diagram that is possible for e e™ — e~ e™ (figure 25a) because one QED ver-
tex cannot change an electron to a muon (QED conserves flavour). Such calculations will
nonetheless find renewed experimental importance at the highest energies in the coming
decades because the likely successor to the Large Hadron Collider will be an e~ et machine
to study the Higgs boson precisely.

There are various techniques to calculate the quantum amplitude of figure 6.2. In QFT
classes, you will likely learn Dirac gamma matrix algebra with spinor trace sum identities,
which are powerful algorithms. However, we shall analyse the helicity amplitudes (e.g.
Larkoski and Thomson textbooks) to expose the underlying physics. We take the ultra-
relativistic limit m — O from the outset and invoke various physical principles to further
reduce the calculation to a handful of matrix multiplications that is tolerable with pen and

paper.

Dimensional analysis prelude As usual in physics, it is useful to get a feeling for how the
answer should depend on key physical quantities before commencing an extended calcula-
tion. First, we can work in the centre-of-mass frame to let the four-momenta of the electron,
positron and (virtual) photon be

Pg_ = (Ee> ’ Pe+ = <Ee> ) QY = Pe— + Pe7L = <2E€> . (6.3)
P —p 0
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The cross-section (with dimensions length squared) must be proportional to the inverse
square of centre-of-mass energy (given (ic)? having units of length-energy squared). Mean-
while, we count there are two electromagnetic vertices in the Feynman diagram giving a
factor of e? for the amplitude, which upon squaring gives ¢* = (4magm)>.

The Feynmann diagram (figure 6.2) has 2 vertices involving particles of unit charge. The
vertex factor is then

gim = 4maEm

The only scale in our system is the centre-of-mass energy, so we can write with the Mandel-
stam variable s = E%M = (2E,)? and can assemble our dimensional analysis expectation

2
o oc JEM (6.4)
S

Remarkably, this by itself is only a factor of 47/3 different from the full calculation that
account for all the flux, spin and phase space factors if you take a sneak peek ahead to
equation (6.24).

We can also obtain the correct (1 + cos” 8) angular dependence in the differential cross-
section, by arguing the photon mediator means we can write the circular polarisation vectors
(0,i,£1,0) then performing a rotation in the polar angle.

6.1 Spinor-helicity analysis

Naively inspecting the process e e™ — u~u™, we see 4 distinct particles in the problem
(electron, positron, muon, antimuon), each of which can have one of two charges (+, —) and
two helicities (L, R), giving 16 possible distinct combinations. Fortunately, we are physicists
who can invoke the physical argument of angular momentum conservation to reduce this
down to only four possibilities. The photon is spin 1, so the combination of spin for the
initial and final states must also sum to 1 to respect angular momentum conservation. To see
what these combinations are, we see forbidden combinations are those whose helicity states
are in opposite directions:

e —% P —-p 4%— et spin 0 = forbidden
=R <R

(6.5)
By contrast, these helicity states intuitively sums to spin one and is therefore allowed:
e~ —G> p -—p 4—% et spin 1 = allowed
=R =L (6.6)
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This applies to both initial and final states so the only allowed helicity combinations are ones
where the particle-antiparticle pair have opposite helicity such that the spin sums to one:

L upt
RL —»RL
RL LR 6.7)
LR R L

LR —-LR

e e

Charge conjugation & flavour universality

We can further halve the number of distinct amplitudes we need to explicitly calculate. Com-
plex conjugation of an initial state vertex gives us a final state vertex

ef (P2) * er. (P2)
=Vl (P2)c ur(P1)| = up(P1)o*vi(P) = (6.8)

ex (P1) eg (P1)
This means complex conjugation of an amplitude .<7* swaps initial with final states and
inverts their charge. Moreover, the photon interacts identically to electrons and muons i.e.

QED respects flavour universality, so we are free to exchange flavour labels e <+ u and the
amplitude remains the same. These two facts mean we can write these equalities

* [ — — - — — el — —
" (egef > Mrpl) =/ (U g —epey) = o (eLeg > ubg). (6.9
Given the final cross-section is always the modulus square of the amplitude ¢ o« &/*.&/ =

|

tudes to evaluate:

2, these equalities imply we can reduce our problem to only having two distinct ampli-

R srL® = [ HARSLIR] (6.10)

| A RSRL® = | RLSIR[ (6.11)

Calculating spinor currents

Let us take the negatively (positively) charged particle as having momentum pointing +p
(—p). After all these simplifications, we are left with only having to calculate two combina-
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tions

by Efp Calculate

RL v otug (6.12)

L R vi6tuL (6.13)
With the initial states are aligned along the the z axis, the vector p points (6,¢) = (0,0)
in spherical coordinates. To obtain p — —p, we invert through the origin (called a parity

transformation), which implies & — 7 — 6,9 — @ + 7, so the —p vector points (0, ¢) =
(m, ). We insert this into eq. (3.87), which allows us to evaluate the spinors

ur(p) = V2E (é) . v(—p) =V2E <0> , (6.14)

1

ur(p) = @( 01> ., vr(—p) = V2E (;)i) : (6.15)

For each of the four components we have to evaluate the action of the Pauli matrices on the
spinors for each of the four vector components equation (3.51):

0

vl otug =2E(0  —i) (;) (é) —2F _li : (6.16)
0
0

viGHuL =2E(i 0) <_IG> (_01> —=2F i . (6.17)
0

Interestingly, this is precisely proportional to the two independent (circular) polarisation
states of the photon €5, sfj that we learn in the classical theory of electromagnetic waves.
The final-state gt~ ™ pair cannot be created with any preferred direction ¢ in the x-y
plane (the two 3-momentum vectors must sum to zero) because the initial state e~ et had no
overall linear momentum in the x-y plane. Nonetheless, we let the 1~ ™ pair have any 0 and
account for these possibilities by rotating the ¢t~ u™ vector in the x-z plane via the rotation

matrix Rg:
1 0 0 O 0 0
0 cosO O sin0 —1 —icos @
Ro [v{oﬂuR}: PO =1 (6.18)
0 —sin6 0 cos B 0 1sin 0
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6.2 Scattering amplitude and cross-section

Finally putting it all together with the photon propagator 1,y / Q?, with Q% = 2E, this results
in a four-vector dot product to obtain the two unique amplitudes:

Arowe = ko] - |Rov{ our | = —eX(14cos ), (6.19)

RILSRL = [v{c‘mR] - [RQVEGMR} — (1 —cos8). (6.20)

Traditionally, electron-positron accelerators do not collide beams with known polarisation
state, so half they time for each electron and positron they are in the L state and the other half
R state. Moreover, particle detectors cannot directly measure the spin state of each outgoing
muons so we sum over the four non-zero amplitudes. This gives the overall amplitude as:

% Y || = % <2 }ez(l +cos 9)|2+2 ]ez(l —cos 9)‘2) = ¢*(1+cos? ). (6.21)
spins

Assembling this in the Fermi golden rule and phase space for two ultrarelativistic particles
gives the differential cross-section as a function of cos 6:

do(e et »pupu*)  mogy >
= . 6.22
dcos 0 2s (I+cos”6) ( )

To obtain the total cross-section, integrate over the full range of cos 0:

oy (! 5
c:%/ (dcos 8)(1 +cos? ), (6.23)
s J-
which gives the final result:
-+ oy Amady
ole e —>,u,u):§ Pt (6.24)

This can be compared with the PETRA accelerator at DESY as precision tests of QED at
high energies (figure 34b). At higher-energies, the Z boson resonance exchange becomes
important, which is shown later in figure 102 when we discuss electroweak interactions.

6.3 Breit-Wigner resonances

In s-channel annihilation reactions like e "e™ — X — u~u™, intermediate resonances with
non-zero mass can appear as X such as a Z boson. We can consider reactions of the form
i — X — f with an unstable intermediate state X, which we describe as a Breit—Wigner
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Figure 34: PETRA collider tests of QED. Plot from Hazel and Martin (1984)

resonance. We can write the wave function y; of a state with energy Eq and lifetime 7= 1/I"
is
—iEole—l/ZT _

v = Woe e~ (E0+T/2)1, (6.25)

The evolution of y; as a function of time as a function of energy Yg is given by the Fourier
transform .
— —iEt — 7[[i(EQ*E)+r/2} dt o 6.26
VE /e v "'O/e (E—Eo) —il/2 (6.26)

The cross-section is then the modulus square ¢ o< Yy g to give the Breit-Wigner formula.

This describes the cross-section of a reaction i — X — f in energy E space:

o . l F,Tf
XSS T 02 (E— Ex )2+ (T)2)2

(6.27)

Multiplying through by (E + Ex) and applying E ~ Ex = Mx when needed, this is often

rewritten in a form that makes Lorentz invariance more manifest
T ;T fM )2(

Pp, (s —Mg)? + (MxT'/2)%

Ciosxosf = (6.28)

This is a useful phenomenological description of observed unstable particles in experiments.
Here is a list of useful vocabulary often used to describe decays of particles:
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6 ELECTRON-POSITION ANNIHILATION BREIT-WIGNER RESONANCES
* Natural width I" = 1/7: rate of (decay) reaction is inversely related to the rest lifetime
T, which corresponds to a width in energy units.

* Decay channels X — f,f € {1,2...}: All the possible final states an unstable state
may decay to.

* Partial widths I';: the natural width associated with the specific decay channel f.
* Total width "=} ,I'f: the sum over all decay channels’ partial widths.

* Branching ratio By = I'y/T": The proportion of the rate of a particular decay channel
to the total rate of decay.

* Incident momentum p;,, momentum of the incident particle.
_ 2
* System energy s = E~.
* Resonance mass My : invariant mass of the intermediate resonance.

We can include extra factors accounting for the multiplicity of spins for the resonance state
sx and initial (say two) particles sy »:

th spi 2sx +1
G}Vlth spin_ o
=X T (251 4+1) (2524 1) i=X—=f

In practice we perform scattering experiments over various system energies E. If an unstable
intermediate state X is produced the cross-section (6.27), and thus probability of decaying
to final state f, enhances. This increases the number of events of f at the energy Ey corre-
sponding to the rest mass energy myc> of the resonance state.
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7 Vacuum loop effects

During 1947 in New York City, a pair of landmark experiments performed at Columbia Uni-
versity revealed the vacuum is dynamical, laying the foundations for quantum field theory.
No new particles were discovered, yet these results opened a major paradigm shift in physics.
Today, their modern incarnations provide among the most precise tests of quantum field the-
ory.

We discuss the experimental manifestations of three classes of one-loop effects in QED
(figure 35). This serves as the experimental complement to QFT classes, where you learn
the theoretical techniques to calculate loop diagrams. The fundamental problem is that inte-
grating over all internal loop momenta causes divergences. Particle physics textbooks do not
always cover experimental tests of QED loop effects, perhaps because they involve atomic
physics techniques; nonetheless I found the Bettini textbook has some nice experimental
discussion.

7.1 Lamb shift

Solving the hydrogen atom using the Dirac rather than Schrédinger equation shifts the energy
levels by a term of order a’:

13.6 eV o? 1 3
E, =— 14+ — T 7.1
o n? l +n2 <j+1/2 4n>] 7.1

The additional relativistic term is small (a? ~ 1 /18700) compared to the eV scales of the

principal energy levels. This represents the correction from the relativistic motion of an

Dirac theory ~ Lamb shift Lamb shift Magnetic dipole Running coupling

LA AL

Figure 35: Tree-level (Dirac theory) and one-loop QED diagrams. The Lamb shift arises
from the external electron propagators interacting with a photon loop. The anomalous mag-
netic moment g — 2 arises from the electron—photon vertex loop. The running coupling arises

+

from vacuum polarisation inducing an e e pair loop in the photon propagator.
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E Bohr Dirac Lamb shift

Principal energy Relativistic motion Vacuum fluctuations
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Figure 36: Hydrogen n = 2 energy levels. These are sketched for the Bohr model solving
the Schrodinger equation with a Coulomb potential, Dirac equation accounting for relativistic
electron motion. The electron interacting with fluctuations in the electromagnetic vacuum
induces the Lamb shift that splits the 25} /, and 2P, ;, energy levels otherwise degenerate in
the Dirac model.

electron in the Coulomb potential.

A consequence of spin-orbit coupling is that all the L # O states splitinto e.g. 2P, /2:2P5 )2,
with notation nL;. But states with the same principal energy level n and total angular mo-
mentum j but different orbital L number can have degenerate energies (figure 36). This
degeneracy between the 25, /; and 2P; / states is a predicted by Dirac theory:

AEpirac = E (281) —E (2P, ) =0. (7.2)

To test this degeneracy, Willis Lamb and Robert Retherford performed precision microwave
measurements of the hydrogen fine structure in 1947 [49].

They utilise the usual Zeeman effect of splitting energy levels by applying a magnetic
field to the hydrogen atom. What they measured is shown in figure 38. For nonzero magnetic
field B # 0, they measure energy-level transitions with respect to the reference 2P, state,
where the azimuthal angular momentum states m = +%, —i—%, —% correspond to the different
branches. The dashed line shows the expectation from Dirac theory alone. The measured
values have lines drawn that extrapolate to a common value for B = 0. There is a clear
systematic shift of around a 1000 megacycles per second (megahertz), which was measured

(more precisely by 1952) to be
AEL jmb = 1057.8 0.1 MHz = 4.3747 £0.0004 ueV. (7.3)
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Figure 37: Mass renormalisation loop.
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Figure 38: Lamb-Retherford measurement of Lamb shift. Figure: Ref. [49].

This is a watershed moment in physics. It shows that the electromagnetic field is not static,
as assumed in classical physics. The field itself is quantum mechanical and therefore exhibits
quantum fluctuations, imparting measurable dynamics onto the electron.
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7.2 Anomalous magnetic moment

Also working at Columbia in New York, Polykarp Kusch and Henry Foley measured the
magnetic moment of the electron to high precision [50, 51]:

gs = 2(1.00119 £ 0.00005). (7.4)

This is the proportionality constant prefixing the Hamiltonian for a magnetic moment in an

external field:
8s€

2my

A =—p-B=-—"8.B. (7.5)

The relevant tree-level and one-loop QED vertex diagrams for the g-factor are:

(04
3
(7.6)

The value of 2 is predicted by the Dirac equation and the one-loop a /7 contribution. This
one-loop correction to the QED vertex was first calculated by Julian Schwinger in 1948 [52]:
R 8e—2 o
aloor — 25— =5 = 000116, (7.7)
Calculating this is somewhat involved and is taught in an advanced quantum field theory
class covering renormalization.

Today, the state-of-the-art experimental and theoretical values are simply astounding.
The most accurate value of a, is measured by an electron cyclotron Penning trap at North-
western University [2]. The main idea for their direct measurement is that the cyclotron @,
spin-precession @s frequencies are equal for g = 2:

eB

O, = _}/_ cyclotron charged particle in B field, (7.8)
m
eB g—2 . .
O = _}/_ I+y - Larmor precession of spin in B field. (7.9)
m

Their measured differences are therefore approximately related to the anomalous precession
frequency @, ~ @, — @5 < g —2:

)
Wy ~ O — @ o gT%B. (7.10)
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spin =
momentum =——————p-

Figure 39: Penning trap spin-precession measurement schematic. This shows the spin
precession and momentum vectors for g = 2 and g # 2. Figures: tikz.net.

The main experimental aspect that needs to be known very well is the magnetic field B.

This is compared to theory predictions from 10th order QED calculations, which require
inputs from fine-structure constant ogyy measurements at Paris [3] and Berkeley [53]. The
state-of-the-art values are displayed in figure 41 with all the digits spectacularly printed [54]:

aZ®(cyclotron) = 0.001 15965218059 (13) 2], (7.11)
atheory (agﬁ) = 0.001159652182037 (720) gz, (11)iheory (12)hagron 3] (7.12)

afeor (o) = 0.001159652 181606 (229) gc. (1 )neory (12)aaron [53]. (7.13)
EM

The three parentheses refer to the uncertainties from fine-structure constant measurements
(agm), numerical evaluation of the tenth-order loop calculations (theory), and the hadronic
contributions (hadron). At tenth order in agy, there are 12,672 diagrams correcting the
vertex calculations involving mesmerising loop diagrams [55], ten of which are shown in fig-
ure 40. Even more remarkably, the dominant uncertainty on these calculations arise from ex-
perimental systematic uncertainties in the measurements of the fine-structure constant Ogy.
The Standard Model does not predict the value of agy;, which is why we must measure it
independently.

Fine structure constant measurements are independently performed using the atomic
recoil method [3, 53]. This measure the recoil velocity vie. = fik/M of a cold atom with
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Figure 40: Example digrams from tenth order QED. Image: Ref. [55]

mass M when absorbing a photon with momentum %k from an external laser. This determines
the ratio 4/M which can be related to the fine structure constant via the Rydberg formula:

The prefactors to 2/ M are known to extraordinary accuracy from CODATA [56]: the Rydberg
constant R.. is known to parts per trillion (ppt) from hydrogen spectroscopy, while the atom-
to-electron mass ratio M /m, is determined from the relative atomic mass being 69 (30) ppt
for rubidium (electron).

Evidently, resolving the tension between the two measurements of agy made by rubid-
ium and caesium atoms is essential to make progress in testing the Standard Model. Nonethe-
less, that we are confronting discrepancies at better than parts per trillion is just spectacular
for experiment and theory. These are monumental triumphs of scientific inquiry.

7.3 Running coupling

Another profound consequence of quantum field theory is that couplings we initially call
‘constants of nature’ actually depend on the energy at which we measure them. The un-
derlying physical effect is vacuum polarisation. The physical picture is that the vacuum
around a particle actually polarises i.e. the vacuum is surrounded by a cloud of positive and
negative particles (figure 42). These electron-positron (—+) pairs are spontaneously created
and annihilated from the vacuum as quantum fluctuations. The higher the energy the particle
we use to probe another, the more we probe this polarisation. This picture means far away
from the electron, we see a lower effective charge because the positive charges cancel out the
negative charge of the electron.

But if we accelerate a probe particle with high momentum, this can wade through the
cloud of virtual particles and see a higher effective charge. This leads to the notion that the
measured electromagnetic coupling increases with momentum transfer due to the existence of
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Washington 1987 {  j=—————@—— 2,
Stanford 2002 - h/m('33Cs) | O {
E h/m@®Rb
LKB 2011 ('Rb) 184 : ° | himERb)
Harvard 2008 | a, @ a, —e—
RIKEN 2019 ©
h/m(*%3Cs) |—g@—]
Berkeley 2018 - h/m(133Cs) [}
h/m(®'Rb) @
This work - h/mERb) @ 8j9 ' 9i0 ' 9j1 ' 9i2
T T T T T
8 9 10 11 12

(" - 137.035990) x 10°

Figure 41: Fine-structure constant measurements. The determination of the fine-structure
constant via the matter recoil method (blue and green) compared with Penning trap cyclotron
measurements of the electron anomalous magnetic moment a, (red). Figure: Ref. [3].

Figure 42: Vacuum polarisation as a cloud of virtual particles. Interactions of a low
energy (longer wavelength) particle probing an electron are screened by the cloud, resulting
in a smaller measured coupling. A high energy (shorter wavelength) particle can probe deeper
into the cloud, resulting in a larger measured coupling.

quantum fluctuations. Specifically, the photon propagator receives corrections from fermion
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Figure 43: Bhabba scattering. Tree-level (left) and one-loop (right) vacuum polarisation
diagrams in t-channel exchange.

loops:

Hmeas: ANNANNNU _|_ ’\/\O’W _l_ ’\/\O’\/\O’\N _J’_..‘ (7.15)

We can write the structure of the physical photon propagator Ily,ys as a perturbative ex-
pansion in the bare coupling ¢ and bare photon propagator I, with each fermion loop
contributing a negative sign:

Mpnys = I+ e(—1)1(g*)eTy +Tlel(q%)e el (q%)eTTy — ... (7.16)
= TTp— oI (¢g?) 11 + o311 (¢) TLI (¢?)TT — . .. (7.17)

Quantum Field Theory classes teach us how to evaluate loop integral I(¢?). We could look
up the result in a textbook [1] to find that the amplitude changes by 1 —I(g?):

A? Jk2 1 2
N a dk 20 B _qgx(1—x)
1(q)_§/mg 2 7 h dx(1 x)ln[l — | (7.18)

e

We shall now sketch the process of renormalisation in a page. The first term of the loop
integral is famously infinite when integrating over all momentum k. We admit that we cannot
know physics at arbitrarily small distance (or large energy) scales and impose an energy

cutoff A. At high momentum transfers g >> m? limit, the integral becomes
a A?
I1(¢?)=-=In(— ). 7.19
()= 5 n(—qz) 7
The perturbative expansion to higher loops orders can be summed as a geometric series
S=1/(1—-r):
1

1A+ AN -+ = Temmeare 0
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Figure 44: Running electromagnetic coupling. Electromagnetic coupling as a function of
momentum transfer squared Q* measured by the L3 Experiment.

where we have defined Q> = —¢?. The net impact of this is a shift in the coupling a(Q?)
constant measured at scale Q7 relative to the bare coupling constant o

%

= T4 (00/37m) In (A2 Q%) 72D

(0%

We can make measurements of « (Q2 = ,uz) at a reference mass scale u (e.g. the electron
mass [t = m,), which allows us eliminate o by subtracting o~ !(Q?) — a~!(u?) to obtain

_ o(u?)
1 —[o(p?)/37]In (Q%/u?)

This remarkable result shows that by considering only measurable values of o(Q?), we re-

o (0?) (7.22)

move the dependence on the arbitrary cutoff scale A. This is the process of renormalisation
via the cutoff method, and u is the renormalisation scale. The result is that the coupling
now depends on the momentum scale Q°. The differential equation describing this evolution
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is called the beta function:

d 208
;‘ZM — B(oty) = —JEM. (7.23)

3n
Figure 44 shows high-energy electron-positron accelerator measurements of e*e™ — ete™

at the L3 Experiment [57]. We can see that measured values at the different energy scales are

apm(q” = 0) ~ . (7.24)
1
oem(q? =m%) ~ o5 (7.25)

In quantum electrodynamics, the effective coupling ogm grows with energy scale.



